网络对齐(NA)是在不同网络上发现节点对应关系的任务。尽管NA方法在无数场景中取得了巨大的成功,但它们的令人满意的性能并非没有先前的锚链接信息和/或节点属性,这可能并不总是可用。在本文中,我们提出了一种使用节点属性增强的新型NA方法的Grad-Align+,对于没有此类其他信息,它非常健壮。 Grad-Align+建立在最近的最新NA方法(所谓的Grad-Align)上,该方法逐渐发现了节点对的一部分,直到找到所有节点对。具体而言,grad Align+由以下关键组成组成:1)基于节点的中心度度量的增强节点属性,2)计算从图神经网络中提取的嵌入相似性矩阵,并在该图中提取了增强节点属性,并在其中进食增强的节点属性和3)通过计算相对于对齐的跨网络邻域对,逐渐发现节点对。实验结果表明,Grad-Align+具有(a)优于基准NA方法的优势,(b)我们理论发现的经验验证,以及(c)我们属性增强模块的有效性。
translated by 谷歌翻译
社交网络中社区结构的发现已成为各种网络分析任务的基本问题。但是,由于隐私问题或访问限制,网络结构通常是未知的,从而使既定的社区检测方法无效而没有昂贵的数据获取。为了应对这一挑战,我们提出了元代码,这是一种新型的端到端解决方案,用于通过易于收集的节点元数据在探索性学习的帮助下检测具有未知拓扑的网络中的重叠社区。具体而言,元代码由三个步骤组成:1)初始网络推断,2)基于图形神经网络(GNNS)的节点级别的社区 - 结合嵌入,该网络(GNNS)受我们的新重建损失培训,以及3)通过社区处理 - 基于节点查询,其中步骤2和3进行迭代执行。实验结果表明,元代码表现出(a)比基准方法优于重叠的社区检测,(b)我们训练模型的有效性以及(c)快速网络探索。
translated by 谷歌翻译
我们为神经机翻译(NMT)提供了一个开源工具包。新工具包主要基于拱形变压器(Vaswani等,2017)以及下面详述的许多其他改进,以便创建一个独立的,易于使用,一致和全面的各个领域的机器翻译任务框架。它是为了支持双语和多语言翻译任务的工具,从构建各个语料库的模型开始推断新的预测或将模型打包给提供功能的JIT格式。
translated by 谷歌翻译
联邦学习(FL)最近成为网络攻击检测系统的有效方法,尤其是在互联网上(物联网)网络。通过在IOT网关中分配学习过程,FL可以提高学习效率,降低通信开销并增强网络内人检测系统的隐私。在这种系统中实施FL的挑战包括不同物联网中的数据特征的标记数据和不可用的不可用。在本文中,我们提出了一种新的协作学习框架,利用转移学习(TL)来克服这些挑战。特别是,我们开发一种新颖的协作学习方法,使目标网络能够有效地和快速学习来自拥有丰富标记数据的源网络的知识。重要的是,最先进的研究要求网络的参与数据集具有相同的特征,从而限制了入侵检测系统的效率,灵活性以及可扩展性。但是,我们所提出的框架可以通过在各种深度学习模型中交换学习知识来解决这些问题,即使他们的数据集具有不同的功能。关于最近的真实网络安全数据集的广泛实验表明,与基于最先进的深度学习方法相比,拟议的框架可以提高超过40%。
translated by 谷歌翻译
在影响最大化(IM)的现实世界应用中,网络结构通常是未知的。因此,我们可以通过仅探索基础网络的一部分来确定最有影响力的种子节点,但对于节点查询的预算很小。由于收集节点元数据比通过查询节点调查节点之间的关系更具成本效益,我们提出了IM-Meta,这是一种端到端的解决方案,这是通过从查询和节点中检索信息的网络中IM的端到端解决方案元数据。但是,由于元数据的嘈杂性质和连通性推断的不确定性,使用这种元数据来帮助IM过程并非没有风险。为了应对这些挑战,我们制定了一个新的IM问题,旨在找到种子节点和查询节点。在IM-META中,我们开发了一种有效的方法,该方法可以迭代执行三个步骤:1)我们通过暹罗神经网络模型学习了收集的元数据和边缘之间的关系,2)我们选择了许多推断的自信边缘来构建增强的图形, 3)我们通过使用我们的拓扑感知的排名策略来最大程度地提高推断影响扩展,以确定查询的下一个节点。通过查询仅5%的节点,IM-META达到了上限性能的93%。
translated by 谷歌翻译
In this paper, we propose a novel technique, namely INVALIDATOR, to automatically assess the correctness of APR-generated patches via semantic and syntactic reasoning. INVALIDATOR reasons about program semantic via program invariants while it also captures program syntax via language semantic learned from large code corpus using the pre-trained language model. Given a buggy program and the developer-patched program, INVALIDATOR infers likely invariants on both programs. Then, INVALIDATOR determines that a APR-generated patch overfits if: (1) it violates correct specifications or (2) maintains errors behaviors of the original buggy program. In case our approach fails to determine an overfitting patch based on invariants, INVALIDATOR utilizes a trained model from labeled patches to assess patch correctness based on program syntax. The benefit of INVALIDATOR is three-fold. First, INVALIDATOR is able to leverage both semantic and syntactic reasoning to enhance its discriminant capability. Second, INVALIDATOR does not require new test cases to be generated but instead only relies on the current test suite and uses invariant inference to generalize the behaviors of a program. Third, INVALIDATOR is fully automated. We have conducted our experiments on a dataset of 885 patches generated on real-world programs in Defects4J. Experiment results show that INVALIDATOR correctly classified 79% overfitting patches, accounting for 23% more overfitting patches being detected by the best baseline. INVALIDATOR also substantially outperforms the best baselines by 14% and 19% in terms of Accuracy and F-Measure, respectively.
translated by 谷歌翻译
Modern deep neural networks have achieved superhuman performance in tasks from image classification to game play. Surprisingly, these various complex systems with massive amounts of parameters exhibit the same remarkable structural properties in their last-layer features and classifiers across canonical datasets. This phenomenon is known as "Neural Collapse," and it was discovered empirically by Papyan et al. \cite{Papyan20}. Recent papers have theoretically shown the global solutions to the training network problem under a simplified "unconstrained feature model" exhibiting this phenomenon. We take a step further and prove the Neural Collapse occurrence for deep linear network for the popular mean squared error (MSE) and cross entropy (CE) loss. Furthermore, we extend our research to imbalanced data for MSE loss and present the first geometric analysis for Neural Collapse under this setting.
translated by 谷歌翻译
We present a Machine Learning (ML) study case to illustrate the challenges of clinical translation for a real-time AI-empowered echocardiography system with data of ICU patients in LMICs. Such ML case study includes data preparation, curation and labelling from 2D Ultrasound videos of 31 ICU patients in LMICs and model selection, validation and deployment of three thinner neural networks to classify apical four-chamber view. Results of the ML heuristics showed the promising implementation, validation and application of thinner networks to classify 4CV with limited datasets. We conclude this work mentioning the need for (a) datasets to improve diversity of demographics, diseases, and (b) the need of further investigations of thinner models to be run and implemented in low-cost hardware to be clinically translated in the ICU in LMICs. The code and other resources to reproduce this work are available at https://github.com/vital-ultrasound/ai-assisted-echocardiography-for-low-resource-countries.
translated by 谷歌翻译
KL-regularized reinforcement learning from expert demonstrations has proved successful in improving the sample efficiency of deep reinforcement learning algorithms, allowing them to be applied to challenging physical real-world tasks. However, we show that KL-regularized reinforcement learning with behavioral reference policies derived from expert demonstrations can suffer from pathological training dynamics that can lead to slow, unstable, and suboptimal online learning. We show empirically that the pathology occurs for commonly chosen behavioral policy classes and demonstrate its impact on sample efficiency and online policy performance. Finally, we show that the pathology can be remedied by non-parametric behavioral reference policies and that this allows KL-regularized reinforcement learning to significantly outperform state-of-the-art approaches on a variety of challenging locomotion and dexterous hand manipulation tasks.
translated by 谷歌翻译
Ensemble learning combines results from multiple machine learning models in order to provide a better and optimised predictive model with reduced bias, variance and improved predictions. However, in federated learning it is not feasible to apply centralised ensemble learning directly due to privacy concerns. Hence, a mechanism is required to combine results of local models to produce a global model. Most distributed consensus algorithms, such as Byzantine fault tolerance (BFT), do not normally perform well in such applications. This is because, in such methods predictions of some of the peers are disregarded, so a majority of peers can win without even considering other peers' decisions. Additionally, the confidence score of the result of each peer is not normally taken into account, although it is an important feature to consider for ensemble learning. Moreover, the problem of a tie event is often left un-addressed by methods such as BFT. To fill these research gaps, we propose PoSw (Proof of Swarm), a novel distributed consensus algorithm for ensemble learning in a federated setting, which was inspired by particle swarm based algorithms for solving optimisation problems. The proposed algorithm is theoretically proved to always converge in a relatively small number of steps and has mechanisms to resolve tie events while trying to achieve sub-optimum solutions. We experimentally validated the performance of the proposed algorithm using ECG classification as an example application in healthcare, showing that the ensemble learning model outperformed all local models and even the FL-based global model. To the best of our knowledge, the proposed algorithm is the first attempt to make consensus over the output results of distributed models trained using federated learning.
translated by 谷歌翻译